Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401137, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742799

RESUMO

In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules, due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, we report here the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. We propose chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites as customizable high-performance sieves for a wide range of challenging separation requirements. This article is protected by copyright. All rights reserved.

2.
Biomacromolecules ; 25(5): 3063-3075, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652055

RESUMO

Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable ß-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive ß-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.


Assuntos
Amiloide , Interações Hidrofóbicas e Hidrofílicas , Amiloide/química , Peptídeos/química , Agregados Proteicos , Humanos , Simulação de Dinâmica Molecular , Nanofibras/química , Estrutura Secundária de Proteína
3.
Adv Healthc Mater ; 13(4): e2301364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947246

RESUMO

Retroviral gene delivery is the key technique for in vitro and ex vivo gene therapy. However, inefficient virion-cell attachment resulting in low gene transduction efficacy remains a major challenge in clinical applications. Adjuvants for ex vivo therapy settings need to increase transduction efficiency while being easily removed or degraded post-transduction to prevent the risk of venous embolism after infusing the transduced cells back to the bloodstream of patients, yet no such peptide system have been reported thus far. In this study, peptide amphiphiles (PAs) with a hydrophobic fatty acid and a hydrophilic peptide moiety that reveal enhanced viral transduction efficiency are introduced. The PAs form ß-sheet-rich fibrils that assemble into positively charged aggregates, promoting virus adhesion to the cell membrane. The block-type amphiphilic sequence arrangement in the PAs ensures efficient cell-virus interaction and biodegradability. Good biodegradability is observed for fibrils forming small aggregates and it is shown that via molecular dynamics simulations, the fibril-fibril interactions of PAs are governed by fibril surface hydrophobicity. These findings establish PAs as additives in retroviral gene transfer, rivalling commercially available transduction enhancers in efficiency and degradability with promising translational options in clinical gene therapy applications.


Assuntos
Técnicas de Transferência de Genes , Peptídeos , Humanos , Peptídeos/química , Terapia Genética , Adjuvantes Imunológicos
4.
Chem Mater ; 35(21): 9192-9207, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027541

RESUMO

Bioinspired, stimuli-responsive, polymer-functionalized mesoporous films are promising platforms for precisely regulating nanopore transport toward applications in water management, iontronics, catalysis, sensing, drug delivery, or energy conversion. Nanopore technologies still require new, facile, and effective nanopore functionalization with multi- and stimuli-responsive polymers to reach these complicated application targets. In recent years, zwitterionic and multifunctional polydopamine (PDA) films deposited on planar surfaces by electropolymerization have helped surfaces respond to various external stimuli such as light, temperature, moisture, and pH. However, PDA has not been used to functionalize nanoporous films, where the PDA-coating could locally regulate the ionic nanopore transport. This study investigates the electropolymerization of homogeneous thin PDA films to functionalize nanopores of mesoporous silica films. We investigate the effect of different mesoporous film structures and the number of electropolymerization cycles on the presence of PDA at mesopores and mesoporous film surfaces. Our spectroscopic, microscopic, and electrochemical analysis reveals that the amount and location (pores and surface) of deposited PDA at mesoporous films is related to the combination of the number of electropolymerization cycles and the mesoporous film thickness and pore size. In view of the application of the proposed PDA-functionalized mesoporous films in areas requiring ion transport control, we studied the ion nanopore transport of the films by cyclic voltammetry. We realized that the amount of PDA in the nanopores helps to limit the overall ionic transport, while the pH-dependent transport mechanism of pristine silica films remains unchanged. It was found that (i) the pH-dependent deprotonation of PDA and silica walls and (ii) the insulation of the indium-tin oxide (ITO) surface by increasing the amount of PDA within the mesoporous silica film affect the ionic nanopore transport.

5.
Nat Commun ; 14(1): 5121, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612273

RESUMO

Gene therapy via retroviral vectors holds great promise for treating a variety of serious diseases. It requires the use of additives to boost infectivity. Amyloid-like peptide nanofibers (PNFs) were shown to efficiently enhance retroviral gene transfer. However, the underlying mode of action of these peptides remains largely unknown. Data-mining is an efficient method to systematically study structure-function relationship and unveil patterns in a database. This data-mining study elucidates the multi-scale structure-property-activity relationship of transduction enhancing peptides for retroviral gene transfer. In contrast to previous reports, we find that not the amyloid fibrils themselves, but rather µm-sized ß-sheet rich aggregates enhance infectivity. Specifically, microscopic aggregation of ß-sheet rich amyloid structures with a hydrophobic surface pattern and positive surface charge are identified as key material properties. We validate the reliability of the amphiphilic sequence pattern and the general applicability of the key properties by rationally creating new active sequences and identifying short amyloidal peptides from various pathogenic and functional origin. Data-mining-even for small datasets-enables the development of new efficient retroviral transduction enhancers and provides important insights into the diverse bioactivity of the functional material class of amyloids.


Assuntos
Proteínas Amiloidogênicas , Mineração de Dados , Reprodutibilidade dos Testes , Bases de Dados Factuais , Peptídeos , Retroviridae
6.
Biomater Sci ; 11(15): 5251-5261, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37341479

RESUMO

Amyloid-like nanofibers from self-assembling peptides can promote viral gene transfer for therapeutic applications. Traditionally, new sequences are discovered either from screening large libraries or by creating derivatives of known active peptides. However, the discovery of de novo peptides, which are sequence-wise not related to any known active peptides, is limited by the difficulty to rationally predict structure-activity relationships because their activities typically have multi-scale and multi-parameter dependencies. Here, we used a small library of 163 peptides as a training set to predict de novo sequences for viral infectivity enhancement using a machine learning (ML) approach based on natural language processing. Specifically, we trained an ML model using continuous vector representations of the peptides, which were previously shown to retain relevant information embedded in the sequences. We used the trained ML model to sample the sequence space of peptides with 6 amino acids to identify promising candidates. These 6-mers were then further screened for charge and aggregation propensity. The resulting 16 new 6-mers were tested and found to be active with a 25% hit rate. Strikingly, these de novo sequences are the shortest active peptides for infectivity enhancement reported so far and show no sequence relation to the training set. Moreover, by screening the sequence space, we discovered the first hydrophobic peptide fibrils with a moderately negative surface charge that can enhance infectivity. Hence, this ML strategy is a time- and cost-efficient way for expanding the sequence space of short functional self-assembling peptides exemplified for therapeutic viral gene delivery.


Assuntos
Nanofibras , Peptídeos , Sequência de Aminoácidos , Peptídeos/química , Amiloide
7.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902270

RESUMO

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Assuntos
Hidrogéis , Infecção dos Ferimentos , Humanos , Pseudomonas aeruginosa , Peptídeos Antimicrobianos , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos
8.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983008

RESUMO

Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.


Assuntos
Ácido Hialurônico , Periodontite , Humanos , Ácido Hialurônico/farmacologia , Engenharia Tecidual , Oxigênio , Porphyromonas gingivalis , Periodontite/terapia , Periodontite/microbiologia
9.
Macromol Biosci ; 23(2): e2200294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36281903

RESUMO

Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.


Assuntos
Amiloide , Peptídeos , Cricetinae , Animais , Amiloide/química , Amiloide/metabolismo , Células CHO , Cricetulus , Estrutura Secundária de Proteína
10.
Macromol Rapid Commun ; 44(16): e2200332, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689352

RESUMO

Bioderived polymers are one of many current research areas that promise a sustainable future. Due to their unique properties, the bioderived polymer polydopamine has been in the spotlight over the last decades. Its ability to adhere to virtually any surface and its stability over a wide pH range as well as in several organic solvents make it a suitable candidate for various applications like coatings and biosensors. However, strong light absorption over a broad range of wavelengths and high quenching efficiency limit its uses. Therefore, new bioderived polymers with similar features to polydopamine but without fluorescence quenching properties are highly desirable. Herein, the electropolymerization of a bioderived analog of dopamine, 3-amino-l-tyrosine, is demonstrated. The resulting polymer, poly(amino-l-tyrosine), exhibits several characteristics complementary to or even exceeding those of polydopamine and its analog, polynorepinephrine, rendering poly(amino-l-tyrosine) attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectro-electrochemistry, and electrochemical quartz crystal microbalance measurements are applied to study the electrodeposition of this material, and the resulting films are compared to polydopamine and polynorepinephrine. Impedance spectroscopy reveals increased ion permeability of poly(amino-l-tyrosine) compared to polydopamine and polynorepinephrine. Moreover, the reduced fluorescence quenching of poly(amino-l-tyrosine) supports its use as coating for biosensors and organic semiconductors.


Assuntos
Técnicas Biossensoriais , Polímeros , Polímeros/química , Tirosina , Dopamina/química , Técnicas de Microbalança de Cristal de Quartzo
11.
J Biol Chem ; 298(12): 102642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309087

RESUMO

Formyl peptide receptors (FPRs) may contribute to inflammation in Alzheimer's disease through interactions with neuropathological Amyloid beta (Aß) peptides. Previous studies reported activation of FPR2 by Aß1-42, but further investigation of other FPRs and Aß variants is needed. This study provides a comprehensive overview of the interactions of mouse and human FPRs with different physiologically relevant Aß-peptides using transiently transfected cells in combination with calcium imaging. We observed that, in addition to hFPR2, all other hFPRs also responded to Aß1-42, Aß1-40, and the naturally occurring variants Aß11-40 and Aß17-40. Notably, Aß11-40 and Aß17-40 are very potent activators of mouse and human FPR1, acting at nanomolar concentrations. Buffer composition and aggregation state are extremely crucial factors that critically affect the interaction of Aß with different FPR subtypes. To investigate the physiological relevance of these findings, we examined the effects of Aß11-40 and Aß17-40 on the human glial cell line U87. Both peptides induced a strong calcium flux at concentrations that are very similar to those obtained in experiments for hFPR1 in HEK cells. Further immunocytochemistry, qPCR, and pharmacological experiments verified that these responses were primarily mediated through hFPR1. Chemotaxis experiments revealed that Aß11-40 but not Aß17-40 evoked cell migration, which argues for a functional selectivity of different Aß peptides. Together, these findings provide the first evidence that not only hFPR2 but also hFPR1 and hFPR3 may contribute to neuroinflammation in Alzheimer's disease through an interaction with different Aß variants.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Receptores de Formil Peptídeo , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Linhagem Celular , Fragmentos de Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Animais , Camundongos
12.
Nano Lett ; 22(2): 578-585, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34904831

RESUMO

The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 µs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.


Assuntos
Nanoestruturas , Polímeros , Indóis , Nanotecnologia , Polímeros/química
13.
ACS Biomater Sci Eng ; 7(10): 4798-4808, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515483

RESUMO

Gradients of bioactive molecules play a crucial role in various biological processes like vascularization, tissue regeneration, or cell migration. To study these complex biological systems, it is necessary to control the concentration of bioactive molecules on their substrates. Here, we created a photochemical strategy to generate gradients using amyloid-like fibrils as scaffolds functionalized with a model epitope, that is, the integrin-binding peptide RGD, to modulate cell adhesion. The self-assembling ß-sheet forming peptide (CKFKFQF) was connected to the RGD epitope via a photosensitive nitrobenzyl linker and assembled into photoresponsive nanofibrils. The fibrils were spray-coated on glass substrates and macroscopic gradients were generated by UV-light over a centimeter-scale. We confirmed the gradient formation using matrix-assisted laser desorption ionization mass spectroscopy imaging (MALDI-MSI), which directly visualizes the molecular species on the surface. The RGD gradient was used to instruct cells. In consequence, A549 adapted their adhesion properties in dependence of the RGD-epitope density.


Assuntos
Amiloide , Oligopeptídeos , Células A549 , Adesão Celular , Movimento Celular , Humanos , Peptídeos
14.
Nanomaterials (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34443798

RESUMO

Polydopamine (PDA) is a synthetic eumelanin polymer which is, to date, mostly obtained by dip coating processes. In this contribution, we evaluate the physical and electrochemical properties of electrochemically deposited PDA films obtained by cyclic voltammetry or pulsed deposition. The obtained PDA thin films are investigated with respect to their electrochemical properties, i.e., electron transfer (ET) kinetics and charge transfer resistance using scanning electrochemical microscopy and electrochemical impedance spectroscopy, and their nanomechanical properties, i.e., Young's modulus and adhesion forces at varying experimental conditions, such as applied potential or pH value of the medium using atomic force microscopy. In particular, the ET behavior at different pH values has not to date been investigated in detail for electrodeposited PDA thin films, which is of particular interest for a multitude of applications. Adhesion forces strongly depend on applied potential and surrounding pH value. Moreover, force spectroscopic measurements reveal a significantly higher percentage of polymeric character compared to films obtained by dip coating. Additionally, distinct differences between the two depositions methods are observed, which indicate that the pulse deposition process leads to denser, more cross-linked films.

16.
J Am Chem Soc ; 143(12): 4782-4789, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750125

RESUMO

Complex coacervated-based assemblies form when two oppositely charged polyelectrolytes combine to phase separate into a supramolecular architecture. These architectures range from complex coacervate droplets, spherical and worm-like micelles, to vesicles. These assemblies are widely applied, for example, in the food industry, and as underwater or medical adhesives, but they can also serve as a great model for biological assemblies. Indeed, biology relies on complex coacervation to form so-called membraneless organelles, dynamic and transient droplets formed by the coacervation of nucleic acids and proteins. To regulate their function, membraneless organelles are dynamically maintained by chemical reaction cycles, including phosphorylation and dephosphorylation, but exact mechanisms remain elusive. Recently, some model systems also regulated by chemical reaction cycles have been introduced, but how to design such systems and how molecular design affects their properties is unclear. In this work, we test a series of cationic peptides for their chemically fueled coacervation, and we test how their design can affect the dynamics of assembly and disassembly of the emerging structures. We combine them with both homo- and block copolymers and study the morphologies of the assemblies, including morphological transitions that are driven by the chemical reaction cycle. We deduce heuristic design rules that can be applied to other chemically regulated systems. These rules will help develop membraneless organelle model systems and lead to exciting new applications of complex coacervate-based examples like temporary adhesives.


Assuntos
Peptídeos/química , Polieletrólitos/química , Modelos Moleculares , Estrutura Molecular
17.
Small ; 17(5): e2005743, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448102

RESUMO

Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.


Assuntos
Hidrogéis , Impressão Tridimensional , Matriz Extracelular , Polímeros , Viscosidade
18.
ACS Appl Nano Mater ; 4(12): 12913-12919, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34977477

RESUMO

We report on a photocatalytic system consisting of CdSe@CdS nanorods coated with a polydopamine (PDA) shell functionalized with molecular rhodium catalysts. The PDA shell was implemented to enhance the photostability of the photosensitizer, to act as a charge-transfer mediator between the nanorods and the catalyst, and to offer multiple options for stable covalent functionalization. This allows for spatial proximity and efficient shuttling of charges between the sensitizer and the reaction center. The activity of the photocatalytic system was demonstrated by light-driven reduction of nicotinamide adenine dinucleotide (NAD+) to its reduced form NADH. This work shows that PDA-coated nanostructures present an attractive platform for covalent attachment of reduction and oxidation reaction centers for photocatalytic applications.

19.
ACS Omega ; 5(41): 26640-26654, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33110991

RESUMO

Nonviral DNA vectors are promising alternatives to viral ones. Their use in DNA medicine is limited by an inability to transfect, for example, nondividing or suspension cells. In recent years, star-shaped synthetic polycationic vectors, so called "Nanostars", have shown some promise in this regard, at least when compared to the "gold standard" in nonviral vectors, namely, linear poly(ethyleneimine) (l-PEI). It has been hypothesized that an ability to transiently destabilize cellular membranes is partially responsible for the phenomenon. This hypothesis is investigated here, taking human leukemia suspension cells (Jurkat cells) as an example. Contrary to l-PEI, the Nanostars promote the cellular uptake of small, normally membrane-impermeant molecules (trypan blue and propidium iodide) as well as that of fluorescent polystyrene beads (average diameter 100 nm). Since Nanostars, but not l-PEI, are apparently able to deliver DNA to nuclei of nondividing cells, nuclear uptake is, in addition, investigated with isolated cell nuclei. Our results provide evidence that Nanostars are more efficient than l-PEI in increasing the nuclear membrane association/permeability, allowing accumulation of their cargo on/in the nucleus.

20.
Biomater Sci ; 8(22): 6113-6156, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33025967

RESUMO

Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.


Assuntos
Vetores Genéticos , Nanopartículas , Técnicas de Transferência de Genes , Genes Virais , Terapia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...